CoordinateWise Descent Methods for Leading Eigenvalue Problem
نویسندگان
چکیده
منابع مشابه
Compact Rational Krylov Methods for the Nonlinear Eigenvalue Problem
We present a new framework of Compact Rational Krylov (CORK) methods for solving the nonlinear eigenvalue problem (NLEP): A(λ)x = 0, where λ ∈ Ω ⊆ C is called an eigenvalue, x ∈ Cn \ {0} the corresponding eigenvector, and A : Ω→ Cn×n is analytic on Ω. Linearizations are used for many years for solving polynomial eigenvalue problems [5]. The matrix polynomial P (λ) = ∑d i=0 λ Pi, with Pi ∈ Cn×n,...
متن کاملNumerical Methods for the Tridiagonal Hyperbolic Quadratic Eigenvalue Problem
We consider numerical methods for the computation of the eigenvalues of the tridiagonal hyperbolic quadratic eigenvalue problem. The eigenvalues are computed as zeros of the characteristic polynomial using the bisection, Laguerre’s method, the Ehrlich–Aberth method, and the Durand–Kerner method. Initial approximations are provided by a divide-and-conquer approach using rank two modifications. T...
متن کاملZ-eigenvalue methods for a global polynomial optimization problem
As a global polynomial optimization problem, the best rank-one approximation to higher order tensors has extensive engineering and statistical applications. Different from traditional optimization solution methods, in this paper, we propose some Z-eigenvalue methods for solving this problem. We first propose a direct Z-eigenvaluemethod for this problemwhen the dimension is two. Inmultidimension...
متن کاملC0 IP Methods for the Transmission Eigenvalue Problem
We consider a non-self-adjoint fourth order eigenvalue problem using a discontinuous Galerkin (DG) method. For high order problems, DG methods are competitive since they use simple basis functions and have less degrees of freedom. The numerical implementation is much easier compared with classical finite element methods. In this paper, we propose an interior penalty discontinuous Galerkin metho...
متن کاملComplexity of Path-Following Methods for the Eigenvalue Problem
A unitarily invariant projective framework is introduced to analyze the complexity of path–following methods for the eigenvalue problem. A condition number, and its relation to the distance to ill–posedness, is given. A Newton map appropriate for this context is defined, and a version of Smale’s γ-Theorem is proven. The main result of this paper bounds the complexity of path–following methods i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2019
ISSN: 1064-8275,1095-7197
DOI: 10.1137/18m1202505